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Abstract In wireless sensor networks and social networks,
distributed nodes usually form a network with coverage
ability for a lot of applications, such as the intrusion detec-
tion. In this paper, a new kind of coverage problem with
mobile sensors is addressed, named Line K-Coverage. It
guarantees that any intruder trajectory line cutting across
a region of interest will be detected by at least K sen-
sors. For energy efficiency, we aim to schedule an efficient
sensor movement to satisfy the line K-coverage while
minimizing the total sensor movements, which is named
as LK-MinMovs problem. We firstly construct two time-
efficient heuristics named LK-KM and LK-KM+ based on
the famous Hungarian algorithm. By sacrificing optimality
a little bit, these two algorithms have better time efficiency.
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Then we propose a pioneering layer-based algorithm LLK-
MinMovs to solve LK-MinMovs in polynomial time. Here,
we assume that all sensors are initially located in a closed
region. We validate its correctness by theoretical analysis.
Later, the more general situation are considered that all sen-
sors are allowed to locate outside of the region. We improve
LLK-MinMovs algorithm to the general version: GenLLK-
MinMovs. More importantly, our GenLLK-MinMovs fixes
a critical flaw for MinSum algorithm which was proposed
by previous literature to solve line 1-coverage problem.
We show the flaw using a counter example. Finally, we
validate the efficiency of all our designs by numerical
experiments and compare them under different experiment
settings.

Keywords Line K-coverage · Efficient movement
schemes · Optimization algorithm · Mobile sensor network

1 Introduction

Wireless Sensor Network (MWSN) and Social Network
(SN) nowadays attract special attentions from scientific and
technological community. Coverage is a fundamental prob-
lem among all challenges of MWSN [5, 6] and SN [7, 8].
Broadly speaking, coverage is a measure that determines
how well a network monitors objectives. Many variations of
coverage problem have been proposed for different appli-
cations [9]. As an example, the basic area K-coverage
problem [10] requires that each point in the area should be
covered by at least K sensors.

In MWSNs and SNs, distributed nodes usually form a
network with coverage ability for a lot of applications, such
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as the intrusion detection. How does the network knows that
an intruder or a new node enters its region? First, we should
locate all nodes to structure the entire network. It is common
to borrow Global Position System (GPS) or Local Position
Algorithm (LPA) to finish the positioning duty (GPS-free),
which is studied in many literatures [4]. Especially, the local
position algorithm requires that distributed nodes communi-
cate with neighbors to calculate the local positions for their
neighbors. Then nodes communicate the relative positions
information to implement the global coordinate generation.
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Fig. 1 Illustration for two phase barrier formation

Second, according to the global coordinates of nodes, some
nodes are scheduled to move for repairing all loopholes and
forming a barrier in the region which can detect new intrud-
ers. Figure 1 shows the scenario for the two procedures.
In Fig. 1a, all sensors have the same communication range
radius Rr and the same sensing range radius Rs . Every sen-
sor sends neighbors its position system which takes it as the
original point (0,0) and has relative positions of neighbors.
Actually, some sensors cannot produce position due to the
lack of neighbors, such as sensor D and sensor E. Then,
a head sensor is selected (sensor A) as the global original
point and horizontal direction is X-axis. Some intrusions
along with vertical straight line can penetrate the region.
In Fig. 1b, the sensors near the loopholes move a shortest
distance to form a barrier according to the global position
system, which guarantees that every vertical intrusion will
be detected by at least one sensor. The example shows that
two intruders are detected by E and C after they move to
repair loopholes. If some sensors fail to work due to damage
or exhausted power, the barrier is broken. Then, the two-step
procedure should be done again locally near the sensors.

Barrier coverage is more applicable to monitor borders
because it exploits less sensors than area coverage. In front
of or surrounding an area, a barrier is a belt-like region
in which the sensors are scattered. The barrier is said to
be K-covered [11, 12] if every path that passes through
the barrier touches the sensing range of at least K sensors.
Many researchers considered line track rather than arbitrary
paths for barrier coverage [13–16], since in reality intrud-
ers usually go through a region with a line track. Moreover,
intruders usually do not know any knowledge on the distri-
bution of sensors so they cannot figure out a “smart” path
to follow. In [17], the authors proposed an algorithm named
MinSum to build a barrier by scheduling mobile sensors, so
that any line intrusion will be detected by at least one sensor.
We refer this problem as Line 1-Coverage problem.

In this paper, we consider an advance version of line 1-
coverage problem: Line K-Coverage. A line is said to be
K-covered if it is detected by at least K sensors. A region
is called line K-covered if any line intrusion is K-covered.
Usually, sensors at their initial positions may not form a
line K-cover for the target region. Thus mobile sensors
could move according to some strategy to form a line K-
cover. For energy efficiency purpose, we hope that sensors
will move with a shortest distance. In all, our optimiza-
tion object is to minimize the sum of sensor movements to
achieve the line K-cover for target region. We refer it as
LK-MinMovs problem. For solving the problem, we design
several solutions: Kuhn-Munkres (KM) based algorithms
and layer-based algorithms.

Firstly, we design two algorithms for LK-MinMovs prob-
lem based on the famous Hungarian algorithm. The basic
idea is to place the sensors to several fixed points (positions)
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evenly distributed. We construct a group of sensors and a
group of fixed points as the two parties of a bipartite graph.
We are aiming to match the two parties to satisfy the line
K-coverage requirement. As a kind of Hungarian algorithm,
KM algorithm can solve maximum matching problem in
bipartite graph. However, we cannot use it directly in our
minimization problem. We should transform it to LK-KM
algorithm to calculate the minimization solution. Because
LK-KM produces bad results in some cases, we improve it
and get a new algorithm LK-KM+. Its idea will be explained
later. Because both LK-KM and LK-KM+ are not optimal
algorithms we take them as baselines. However, they have
better time efficiency in spite of sacrificing the optimality a
little bit.

Later, we consider a layer-based and optimal algorithm.
If the initial sensors deployment does not form a line K-
cover, the target region will have “gaps” (K-uncovered
intervals) against the intrusion. Due to the structural com-
plexity, it is not easy to form line K-cover in one shot. A
natural idea is to build line K-cover layer by layer because
gaps have different degrees. We first fill up 1-level gaps
by twofold overlaps, and then fill up 2-level gaps by three-
fold overlaps, until K-level gaps are filled. With this idea
we propose a layer-based algorithm named LLK-MinMovs.
To the best of our knowledge, we firstly solve the line K-
coverage problem in mobile sensor networks, which has
both theoretical and practical significance.

About sensor initial deployment there can be two
assumptions: closed and open assumptions. In closed
assumption, we limit sensor initial deployment into the tar-
get region strictly. It is suitable to describe applications
like gate or channel barriers. However, for more general
application scenarios such as important area protection,
the open initial deployment is more practical because it
is assumed that all sensors can locate outside the target
region. LLK-MinMovs algorithm is proposed under closed
assumption while we improve it into the general version:
GenLLK-MinMovs under open assumption.

For one layer repairing, although the authors in [17]
claimed that MinSum outputs the optimal solution, it is not
always correct. We illustrate the critical flaw of MinSum
by a counter example, and fix the problem in our LLK-
MinMovs algorithm. We also construct another two time-
efficient heuristics named LK-KM and LK-KM+ based on
the famous Hungarian algorithm. By sacrificing optimal-
ity a little bit, these two algorithms runs extremely fast
with suboptimal results. We analyze their time complexity,
and then validate their efficiency in numerical experiments
under different experiment settings.

The rest of the paper is organized as follows. Section 2
introduces some related works. Section 3 presents the prob-
lem statement. In Section 4, we design LK-KM and its
enhanced version LK-KM+ as the baselines. Section 5

describes our layer-based algorithm (LLK-MinMovs) and
gives its optimality proof and time complexity analy-
sis. Section 6 generalizes the LK-MinMovs problem in
terms of sensor open initial deployment and gives a
corresponding algorithm GenLLK-MinMovs. A counter
example in general situation against MinSum is also intro-
duced and corrected. Numerical experiments are presented
in Section 7. Finally, Section 8 gives a conclusion.

2 Related works

Coverage in WSNs can be calculated by a central sink,
which knows the location of the sensors in the field. This
is called global coverage measurement. In contrast, prob-
lem of local coverage measurement is to assess the coverage
around one sensor, based on its geometrical relation to
its neighbors. This problem has been addressed in many
articles on wireless sensor networks. References [1, 3] pro-
posed GPS-free scheduling when the only available infor-
mation is the number of neighbors, and the sensor uses a
probabilistic algorithm for its scheduling decisions. In some
scenarios, a sensor measures the distance to each neigh-
bor using the received signal strength (RSS), the time of
arrival (ToA), the time difference of arrival (TDoA), and
even measures the direction of the neighbor based on the
angle of arrival (AoA) capability. Reference [2] used ToA
and AoA to discover the location of neighbors according
to each sensor and used the Voronoi diagram to detect sen-
sors which could be powered off without an impact on
the coverage value. In this paper, we consider the global
coverage measurement which can also be viewed as rela-
tive global measurement in local measurement by clustering
with several head nodes as sinks.

In the research of mobile sensor networks, several recent
papers considered the strategy of mobile sensor movement
to cover a region of interest, for example [18–20]. Unlike the
problem considered in this paper, they aimed to form an area
coverage rather than barrier coverage for the region of inter-
est. The problem studied in this paper addresses the problem
of ensuring efficient intruder detection without covering the
entire region of interest. The difference between area cov-
erage and barrier can be illustrated in Fig. 1b. It forms
barrier to detect vertical intrusion while it cannot detect all
events occurring in the region everywhere. Besides, people-
centric sensing with smart devices (such as smart phones) is
a new trend for social network. Authors in [21] considered
a problem which is to schedule a minimal number of mov-
ing persons to cover area of interest based on an artificial
map.

Some of the existing works focus on line coverage [22]
in a region. Baumgartner et al. [14] proposed the track cov-
erage problem. Their objective is to place a set of sensors in
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the region such that the chance of detecting the given tracks
by at least some given number of sensors is maximized. Path
coverage is a measure used for tracking moving objects in
a straight line path. Other path coverage metrics are defined
in [15, 16] by analytical expressions for any random deploy-
ment in a region. Balister et al. [13] defined a coverage
metric called trap coverage. It measures the longest distance
an intruder can achieve within the region before touching
the sensing range of any sensor. They are essentially more
like a partial area coverage with restrictions. From objec-
tive angle, obviously researchers want to cover line-track
intrusion from any direction [9]. Authors in [9] proposed
measures for line coverage problem. Therefore, we also
name the problem as Line Coverage from objective angle.

In terms of mobile sensor for barrier, distributed algo-
rithms are proposed in [23] to find the new positions for
sensors to form a barrier, when sensors are initially located
at arbitrary positions and can move along the barrier. Bar-
Noy et al. [24] studied the problem of maximizing the
coverage lifetime of a barrier by mobile sensors with lim-
ited battery powers. How to exploit sensor movement to
improve the quality of barrier coverage are studied in [25].
All of them consider barrier coverage for path, which is
not the objective of this paper. Thus, we focus on line
coverage.

For K-fold barrier coverage, in [26], authors proposed a
similar problem: weak barrier coverage which is close to our
work. However, they just considered random sensor deploy-
ment and devised a relationship between number of sensors
and probability of weak K barrier coverage. Authors in [27]
also considered how to maximize the number of separate
barriers while they discussed a strong barrier problem with
sensors with directional fan-shape range. The similar objec-
tive is discussed in [28], however, authors mainly studied
the relationship between the maximum number of barriers
and the number of sensors as well as movement range of
sensors.

Czyzowicz’s work [17] is the most related to our
objective. The authors proposed MinSum algorithm for
line 1-coverage problem which inspired us to design the

LLK-MinMovs algorithm. However, their algorithm cannot
always output an optimal solution for any instance. We pro-
vide a counter example for MinSum and correct it in our
design.

3 Problem statement

As related works section mentioned, we exploit global
coverage measurement which assumes there is a sink
takes charge of communicating with all other sensors and
scheduling mobile sensors to form line K-coverage. The
energy consumption for communication is much less than
the energy consumption for moving. Therefore, we ignore
communication energy and focus on minimizing the move-
ments. In the following, we give notations for the problem
statement.

Assume the region of interest is a rectangle with hor-
izontal length of L (otherwise we can use the minimum
bounding rectangle of this region to abstract). n sensors
s1, s2, ..., sn are randomly deployed in this region. Each sen-
sor si has coordinator (xi, yi), regarding to left-bottom point
(0, 0), with the same sensing range R. Commonly, R is
much less thanL, thus,R << L. Sensors can move freely in
this region, but they are supported by nonrenewable battery
powers.

Figure 2 is an example scenario (Assume K = 3),
where the intrusion direction is vertical against the rect-
angle. Hence, we could project si into a horizontal line
segment represented by interval [xi − R, xi + R]. Then, we
just need to consider our problem on line segment [0, L]
after the whole region is projected too. To better describe
our problem, we label sensors with their x-coordinate, and
assume that each sensor has distinct xi value in increasing
order. Note that we should have “enough” sensors to satisfy
a line K-coverage. Thus, initially we have at least n sensors.
The number of sensors n lets 2Rn ≥ KL be satisfied.

Easy to see, if we want to form a line K-coverage, every
point along the x axis in [0, L] should belong to as least K

intervals transformed from sensors. However, as shown in

Fig. 2 An example of line
coverage transformation
(K = 3)
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Fig. 2, there are many intervals on x axis that are covered
by less than K sensors, i.e. the interval [x4 + R,L]. We
consider such intervals as gaps. Thus, to form a lineK-cover
is equivalent as to fill up the gaps along x axis after sensor
projection. Note that gaps may have different degrees. Some
gaps are already covered by several sensors (but less than
K), while some other gaps are even bare. To describe a gap
rigorously, we have the following definition.

Definition 1 (Line k-Covered Gap) A line k-covered gap,
denoted as gapk

i , is an interval which starts from the ending
point of sensor xi and ends up to the starting point of sensor
xi+k , say the interval [xi +R, xi+k −R], where xi+k −xi >

2R.

Easy to see, gapk
i is covered by less than k sensors. Three

example gaps are shown in Fig. 2, which are line 1-covered
gap1

0, line 2-covered gap2
5 and line 3-covered gap3

4. We
add two virtual sensors adhesively to the starting point and
ending point of the target interval. In this example, left vir-
tual sensor s0 locates at x0 = −R and right virtual sensor
s7 locates at x7 = L + R. To illustrate our design, we have
another definition for overlap intervals as follow.

Definition 2 (Line k-Covered Overlap) A line k-covered
overlap, denoted as overlapk

i , is an interval which starts
from the starting point of sensor xi+k and ends up to the end-
ing point of sensor xi , say the interval [xi+k − R, xi + R],
where xi+k − xi < 2R.

Similarly, overlapk
i is covered by k + 1 sensors at least.

Thus, some sensors could move to cover other gaps. An
example line 3-covered overlap3

3 is shown in Fig. 2, which
is covered by sensors x3, x4, x5, and x6 respectively.

We will move some sensors to fill up all gaps in [0, L].
Define the final position of sensor si as x

f
i . Then the mov-

ing distance di of si is |xf
i −xi |. The LK-MinMovs problem

is to find the final position for n sensors s1, s2, · · · , sn,
so that these sensors will form a line K-coverage while

the total sensor movements
n∑

i=1
|xf

i − xi | is minimized. We

require sensor movement schedule to obey order preserva-
tion restriction given by a Lemma in [17] and sensors cannot
move out of [0, L]. In all, we formalize the LK-MinMovs
problem as the following linear programming:

min
n∑

i=1
|xf

i − xi | (1)

s.t. 0 ≤ xi ≤ xj ≤ L, ∀ 1 ≤ i ≤ j ≤ N (2)

0 ≤ x
f
i ≤ x

f
j ≤ L, ∀ 1 ≤ i ≤ j ≤ N (3)

x
f
i+k − x

f
i ≤ 2R,

∀ 1 ≤ k ≤ K,

∀ 0 ≤ i ≤ n − k + 1
(4)

Here the expression (1) describes the optimizing objec-
tive, Inequation (2) restricts the initial positions of sensor
deployment, which is closed in interval [0, L]. Meanwhile,
Inequations (2) and (3) together guarantee an important
property: Order Preservation, which is described in Lemma
1. Obviously, Inequation (4) expresses the Line K-Coverage
requirement for the whole region interval.

In the following sections, we will introduce three algo-
rithms to solve the LK-MinMovs problem.

4 Two baselines: LK-KM and LK-KM+ algorithms

We designed two algorithms for LK-MinMovs problem
based on a famous Hungarian Algorithm: Kuhn-Munkres
(KM) algorithm. The two baselines have better time effi-
ciency in spite of sacrificing the optimality a little bit.
Therefore, their results are not optimal. Several researchers
have designed similar algorithm based on Hungarian algo-
rithm for coverage problem. Authors in [29] designed
efficient scheduling algorithms to maximize the lifetime
of a given whole wireless sensor network by consider-
ing adjusting sensing range, locations of target and sen-
sors, the residue battery power of sensor nodes, and
assignment between sensors and targets simultaneously.
In comparison with target coverage [29], authors in [27]
also used Hungarian Algorithm to solve its Minimum
Total Cost Sensor Movement problem. In comparison
with us, they considered how to maximize the number
of separate barriers while they discussed a strong bar-
rier problem by sensors with directional fan-shape sensing
range.

Our basic idea is to place the sensors to several fixed
points (positions) evenly distributed on the line segment
[0, L]. Obviously, it is a perfect Line K-coverage to put
K sensors at each virtual fixed points (positions) with 2R
distance between two neighbors. Then we construct a com-
plete sensor-position bipartite graph G(S, P, E), see Fig. 3.
S represents the sensor set and P represents the virtual
fixed point set. Each virtual fixed point has K copies for
K-cover. Then, we should transform our minimization prob-
lem to the Maximal Matching problem for P . We let the
edge weight w(i, j) be set as L − distance(i, j), where
i ∈ S and j ∈ P , then the maximum matching for P is the
solution of original LK-MinMovs problem. We can use the
KM algorithm (also known as the famousHungarian algo-
rithm) [30, 31] to compute this matching. Our algorithm is
referred as LK-KM algorithm shown in Algorithm 1. The
inputs are an array X[1 . . . n] representing the initial posi-
tions of n sensors, the length of the region, L, the coverage
degree, K , and the sensor radius, R. It returns an array
Xf [1 . . . n] of n elements representing the final positions of
sensors.
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Fig. 3 Illustration for
sensor-position bipartite graph
G(S, P, E)
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However, the LK-KM algorithm produces bad solu-
tions for many cases. Let us see an extreme example in
Fig. 4a. The sensor initial deployment already forms line
K-coverage. If we run LK-KM algorithm on this case,
LK-KM will force all sensors to move to the preset posi-
tions like result Fig. 4b shows. Obviously, these movements
are not necessary. We can find the surplus movements
pushed by LK-KM for almost all inputs if there exists
a lot of sensor overlap redundancy. Intuitively, we try
to improve the LK-KM algorithm with an idea to pull
back the sensors which do not need to go so far away
from their original positions because the sensor redundancy
provides the chance. The line K-coverage enhanced KM
algorithm, denoted as LK-KM+, firstly sorts the terminal

positions to keep the Order Preservation property after call-
ing the original LK-KM algorithm. Then, LK-KM+ uses
PullT oLef t (·) and PullT oRight (·) to shorten the dis-
tance between terminal and original positions of sensors.
The two subroutines both use function move(·) for move-
ment of each sensor back to its original position. We give
an example for calling move(·) in PullT oLef t on sen-
sor xi which has moved to right and need to be pulled left
back, thus is move(i, i,min{X[i] − Xf [i], Xf [i − 1] −
Xf [i], Xf [i + K] − Xf [i] − 2R}). It move xi to left in a
distance which is shortest one among its shift distance,
distance between it and its previous neighbor, and distance bet-
ween it and itsK-hops later neighbor (they should form lineK-
cover together). The corresponding procedure is implemented
in PullT oRight . For space limited, the pseudo-code of
PullT oLef t (·) and PullT oRight (·) is not extended.
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In the original KM algorithm, the time complexity is
O(M2N) where M is the number of target nodes for match-
ing, and N is the number of source nodes. For LK-KM
algorithm, the time complexity isO((KL

2R )2n). It is deducted
by letting M = KL

2R and N = n. And for LK-KM+ algo-
rithm, in spite of adding move(·) steps using only O(n)

time, the total complexity of LK-KM+ is also O((KL
2R )2n).

They are both better than the later LLK-MinMovs in time
complexity. However, they are not optimal.

5 A layer-based algorithm for LK-MinMovs
problem

In this section, we propose an algorithm for LK-MinMovs.
The algorithm uses two concepts: Line k-covered gap and
line k-covered overlap defined in Section 3. Intuitively, we
want to reduce the number of uncovered gap with the help of
the “oversubscribed” overlaps, i.e. the overlap3

3 in Fig. 2,
which is covered by sensors x3, x4, x5, and x6 respectively.
We can schedule one redundant sensor in the overlap to
cover other unsatisfied gaps. In our design, we plan to fill up
the gaps in an ascending order of their coverage degree. Cor-
respondingly, we fill up line 1-covered gaps first, then line
2-covered gaps, and so forth until filling the line K-covered
gaps. It is a reasonable operation consequence because we
want to heal the worst conditions then the second worst
ones in real application scenarios. This is why we call it
layer-based algorithm.

5.1 LLK-MinMovs algorithm

In this layer-based algorithm, named as LLK-MinMovs, we
try to find the two closest overlaps and select a cheaper
one to fill up a target gap. Note that such movement pro-
cess should maintain current coverage level. That means the
algorithm will not bring in new gaps or degrade the current
coverage quality. LLK-MinMovs solves the problem layer
by layer.

Algorithm 3 is the pseudo-code of LLK-MinMovs. Input
and output are similar to that of Algorithm 1. In Algo-
rithm 3, Line 1 sets two virtual stable sensors to bound
the region. Line 2 depicts the layer-based procedure. At
each level k ∈ [1, K], Algorithm 3 finds all line k-covered
gaps and fills up them in a left-right order. The function
isCovered(i, k) in Line 4 is a binary function to determine
whether the interval [xi + R, xi+k − R] is line k-covered
at the current stage. If there exists a gapk

i , we find its left
and right closest overlaps as potential candidates, see line 5–
6, then pick up cheaper one according to cost functions
Lcost (·) and Rcost (·) and move corresponding sensors
to fill up gapk

i according a distance constraint function
Ldist (·) and Rdist (·) to keep the current coverage level,

see line 8–9. The “while” loop from Line 4 to 9 guarantees
that we will fill up all k-covered gaps generated by each xi .

At the initialization stage, LLK-MinMovs sets two vir-
tual static sensors by setting P [0] = −R and P [n + 1] =
L + R. They cannot move in later steps which guarantees
the closure of algorithm. Then algorithm repeats for differ-
ent level Line k-coverage, k from 1 to K , which shows our
layer-based idea. If there is a gapk

i at the end of sensor xi ,
isCovered(i, k) = 0, otherwise isCovered(i, k) = 1. By
scanning all the sensors, we can find every k-level gap and
fill them completely

In the most inner part of the algorithm, we find available
overlaps in an in-out order for each k-level gap. We can find
two nearest k-level overlaps, separatively to the left of the
ith sensor (include itself) and to the right of i + kth sensor
(include itself). Let the left one formed by the lth and (l +
k)th sensors and right one formed by the rth and (r + k)th

sensors. The function f ind() will calculate three values for
left (right) overlap: l (r), its left (right) overlap cost lcost

(rcost ), and left maximum shift lmax (right maximum shift
rmax). It should be noticed that the value l (r) and k satisfies
mod(i−(l+k), k) = 0 (mod(r−(i+k), k) = 0) for each i.
Because it guarantees the overlap sensor is at the same level
of gap bound sensor for the k-level coverage. And if there
is no left (right) overlap, set l = 0, lcost = ∞, lmax = 0
(r = n + 1, rcost = ∞, rmax = 0).

Then we will choose the cheaper one from them
according to lcost and rcost . Here, we define the effect
shift window as the smallest left (right) shift of ones of
(l + k)th, (l + 2k)th, ..., (l + mk)th, ..., ith ((r)th, (r −
k)th, ..., (r − mk)th, ..., (i + k)th) sensors for left (right)
overlap. The value lmax is equal to the minimal one among
effect shift window, size of gap, and size of left overlap.
The value rmax is equal to the minimal one among effect
shift window, size of gap and size of right overlap. The
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Fig. 4 A case shows disadvantage of LK-KM

effect shift window is the smallest left (right) shift of ones
of (l + k)th, (l + 2k)th, ..., (l + mk)th, ..., ith ((r)th, (r −
k)th, ..., (r − mk)th, ..., (i + k)th) sensors for left (right)
overlap. If there is no left (right) shift among these sensors
for left (right) overlap, effect shift window is equal to ∞.
Later, we will give an example to illustrate it. Then the func-
tion move() will takes the corresponding sensors to move
to right (to left) a lmax (rmax) distance. The move() oper-
ation also shows our layer-based idea. Because the overlap
cannot “fly” to the gap, sensors “relay-like” move to fill
gap from the (l + k)th to ith sensor (resp. from rth to
(i + k)th if the right overlap is chosen). Additionally, for k-
level coverage, just right (left) movements of sensors at the
positions separated a multiply of k−1 from ith ((i+k)th) are
helpful for filling the current gap. These sensors are called
“involved” and we denote left (right) ones as InvLef tSetki
(InvRightSetki ).

Now, let us define the cost functions and distance func-
tions respectively. At the beginning of every iteration, we
say one sensor has negative shift if it has moved to left
and has positive shift if it has moved to right or stays still

compared to its initial position. Define shif ti as the shift
distance of xi . Before the definition of overlap cost, we have
a definition for Left/Right Overlap Active Sensor Set as
following.

Definition 3 (Left/Right Overlap Active Sensor Set) For
gapk

i , the lth to (l + k)th sensors left to xi form
overlapk

l and the rth to (r + k)th sensors right to
xi+k form overlapk

r . Left Overlap Active Sensors Set
are sensors at xl+k, xl+2k, · · · , xl+mk, · · · , xi , where l +
mk ≤ i. We denote it as Lef tActSetki,l . Correspond-
ing, Right Overlap Active Sensors Set are sensors at
xr , xr−k, xr−2k, · · · , xr−mk, · · · , xi+k , where r −mk ≥ i +
k. We denote it as RightActSetki,r .

Definition 4 (Left/Right Overlap Cost) For gapk
i , the lth to

(l+k)th sensors left to xi form overlapk
l and the rth to (r +

k)th sensors right to xi+k form overlapk
r . LetNSk

l (PSk
l ) be

the set of sensors which have negative (positive include 0)
shift among Lef tActSetki,l . Let NSk

r (PSk
r )be the set of the

set of sensors which have negative include 0 (positive) shift

Fig. 5 Illustration for left
overlap cost lcost and right
overlap cost rcost (K = 3)
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Fig. 6 Deal with k + 1 level
gaps created by different
strategies
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amongRightActSetki,r . Then Eq. (5) computes the left/right
overlap costs.

{
Lcost (l, i, k) = |PSk

l | − |NSk
l |,

Rcost (i, r, k) = |NSk
r | − |PSk

r | (5)

Definition 5 (Left/Right Overlap Shift Distance) Easy to
know, the size of gapk

i is xi+k − xi − 2R, denoted as Gap-
Size, the size of overlapk

l and overlapk
r are xl −xl+k +2R

and xr − xr+k + 2R respectively, denoted as LOverlap-
Size and ROverlapSize. If NSk

l �= ∅, let MinLef tShif t =
min{|shif ti | | xi ∈ NSk

l }, which is the effect shift win-
dow of left overlap; else MinLef tShif t = ∞. Similarly,
if PSk

r �= ∅, let Min − RightShif t = min{|shif ti | | xi ∈
PSk

r }, which is the effect shift window of right overlap; else
MinRightShif t = ∞. Then the left/right shift distance are

⎧
⎪⎪⎨

⎪⎪⎩

Ldist (l, i, k) =
min{GapSize, LOverlapSize,MinLef tShif t},
Rdist (i, r, k) =
min{GapSize, ROverlapSize,MinRightShif t}

(6)

Figure 5 is an example to illustrate the shift window.
We label sensor segments by their id and the shift distance.
Here gap3

7 has size 5. Its left closest overlap is overlap3
1.

InvLef tSetki = {x4, x7}. Both two sensors have negative
shift (shif t4 = −1 and shif t7 = −3) so NS3

1 = {x4, x7}.
PS3

1 = ∅ because no sensor in InvLef tSetki has right
or zero shift. Similarly, NS3

10 = {x10} PS3
10 = ∅. Thus,

Lcost (1, 7, 3) = 0−2 = −2 andRcost (7, 10, 3) = 1−0 =
1 by Eq. (5). The effect shift window MinLef tShif t =
min{|shif t4|, |shif t7|} = 1, size of gap3

7 is 6 and size
of overlap3

1 is 5 so Ldist (1, 7, 3) = min{1, 5, 6} =
1. Similarly, the right closest overlap overlap3

10 has size
8, Rdist (7, 10, 3) = min{6, 8, ∞} = 6. Thus we will
choose the left overlap to fill gap3

7 since it has cheaper
cost.

After calculating the costs of nearest left and right over-
laps, we can choose the cheaper one. So the left overlap
should be chosen in example in spite of seeming far from
the gap. The difference is for right overlap zero is contained
by negative shift set, while for left overlap zero is contained
by position shift set. That means right (left) shift will ben-
efit those sensors who have moved left (right) to minimize
the total shift distance. Authors in [17] also considered the
compensation by just counting the negative moving sen-
sors and minus the number of negative moving from the
cost function. However, due to their case of K = 1, the
left shifts by right overlap involve moves of sensors whose
shift values are all zero or negative, while right shifts by
left overlap involve moves of sensors whose shift values are
zero, positive, or negative. It is because of the left-to-right
processing of the gaps and one round processing. Our algo-
rithm is a multi-round processing scheme, thus left shifts by
right overlap involve moves of sensors whose shift values
are all zero, negative or negative as well. This is complexity
brought by the K-coverage.

5.2 Optimality and complexity of LLK-MinMovs

Now let us prove the correctness of LLK-MinMovs and ana-
lyze its complexity. Firstly, we will give a lemma below
named Order Preservation.

xi

)b()a(

0

0

xi

xi

L

xi

L

Fig. 7 Overlaps outside of target interval
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Lemma 1 (Order Preservation) For any instance of the LK-
MinMovs problem, if initially sensors are sorted increas-
ingly (x1 ≤ ... ≤ xn) then there exists an optimal solution
where the final positions of sensors satisfy x

f

1 ≤ ... ≤ x
f
n .

This lemma is easy to prove by an inequality |xi − x
f
i | +

|xj −x
f
j | ≤ |xi −x

f
j |+ |xj −x

f
i |, if xi ≤ xj and x

f
i ≤ x

f
j .

Theorem 1 LLK-MinMovs outputs an optimal solution.

Proof Firstly, we state that LLK-MinMovs can solve LK-
MinMovs when K = 1. If we replace the moving strategy
by the new one considering the effect shift window, Theo-
rem 3 in [17] can prove the statement. We then use induction
on K . Assume when K = k ≥ 1, this theorem holds. Let us
consider K = k + 1.

When LLK-MinMovs deals with the kth level gaps, it
does not produce new gaps which are kth level or lower lev-
els. However, the procedure may create k + 1th level gaps
or lengthen k + 1th level gaps. If there is no such new pro-
duced gap, the proof is trivial. So we assume there is a new
k+1th level gap gapk+1

i−k−1, see Fig. 6, now we should make
efforts to recover it. There are two possibilities why the gap
is created. The one is caused by sensor xi−k−1′s left-shift
while another one is caused by sensor xi′s right-shift. They
are symmetrical so in Fig. 6b we take the later one as an
example. Before giving further proof we give two claims
first.

Claim 1 A new k + 1th level gap which is created during
covering kth level while a corresponding kth level gap is
filled up. Reversely, if the k + 1th level gap is not created
while the corresponding kth level gap is left. They have the
same size.

Claim 2 A kth level gap is a part of a k+1th level gap. Cost
for filling k +1th level gap which contains any kth level gap
is more expensive than pure k + 1 level gap with the same
size.

Claim 1 is obvious. We emphasize on explaining Claim
2, because we need to pay more cost for the kth level gap
contained in the k + 1th gap. Moreover, when filling the kth

level gap, algorithm may use overlaps which are also the
nearest overlaps for the k + 1th gap. That means we should
find more expensive overlaps for the k + 1th gap. Claim 2
is always right.

See Fig. 6c, we assume there is another solution
which completes the kth level coverage and does not
create any new k + 1th overlap. Thus, xi and xi−k−1

are attached. According to Claim 1, a kth level gap
is left. In the subgraph Fig. 6b, it is the result of
LLK-MinMovs. Currently, let movements for Fig. 6b be

CurMovs(b) and for Fig. 6c be CurMovs(c). We have
CurMovs(b) ≤ Cur − Movs(c) + Cost(c)(gapk

i ) because
of the optimality assumption for K = k. Let us com-
pare their total movements, denoted as Movs(b) and
Movs(c). For Fig. 6b, we should fill up gapk+1

i−k−1 and

gapk+1
i . For Fig. 6c, we should fill up the gapk

i and
gapk+1

i . We can also have Movs(b) = CurMovs(b) +
Cost(b)(gapk+1

i−k−1) + Cost(b)(gapk+1
i ) and Movs(c) =

CurMovs(c) +Cost(c)(gapk
i )+Cost(c)(gapk+1

i ). Because
left and right overlaps for k + 1 level gaps are the
same, we show them as overlapk+1

l and overlapk+1
r in

Fig. 6b, Fig. 6c, filling k + 1 level overlap(s) with the
same size takes same cost. Then according to Claim 2,
Cost(b)(gapk+1

i−k−1)+Cost(b)(gapk+1
i ) ≤ Cost(c)(gapk+1

i ).
Combining it with previous equations we get Movs(b) ≤
Movs(c). So for K = k + 1, our algorithm is better than
any other solution which does not produce k + 1 level gaps.
Thus, LLK-MinMovs is optimal for K = k + 1. Proof is
finished.

Next, we discuss the time complexity for the LLK-
MinMovs algorithm. There are K loops to cover each level
of gaps. For each loop, we consider the total times of move-
ments. There are two types of movements, left-movement
and right-movement. In each left-movement, either a gap
or an overlap will be removed so the total times of left-
movements Tl ≤ Tol + Tgl , where Tol is the times of
movement when an overlap removes, and Tgl is the times of
movement when an gap removes. In each right-movement,
a gap or an overlap will remove or a sensor is moved back to
its initial location. Similarly, we have Tr ≤ Tor + Tgr + Tb

where Tb is the times of movement when a sensor is moved
back. Since in our algorithm the number of gaps as well as
the number of overlaps will not change, we have Tgl+Tgr =
|gaps|, Tol + Tor ≤ |overlaps| and |gaps| + |overlaps| <

n. On the other hand, for each level k, at most n sensors
are moved back so Tb ≤ Kn. Thus we get the total time of
movement T = Tl + Tr < n + Kn. For each movement,
we will move at most n sensor. Thus the time complexity is
O(K2n2).

6 Generalized sensor initial deployment

In the above discussions, we limit sensor initial deploy-
ment into the target interval [0,L]. It is a closed deployment
assumption. However, for more application scenarios open
initial deployment is more practical. In this section we will
address this topic. First of all, we will redefine overlap in
comparison with the previous definition. Then, new left and
right overlap costs are given. At the algorithm part, how
to identify the first sensor to fill the first gap is the most
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important and need be elaborated. The formal problem def-
inition should be changed. In open distribution scenario, we
find a critical flaw against MinSum algorithm. We will pro-
pose a counter example in last subsection. Corresponding
simulation results will be shown in the section of numerical
experiments.

6.1 Problem redefinition for general initial deployment

We view any intersection between sensor range interval and
outside interval relative to target interval as an overlap. So
Line k-Covered Overlap is redefined as following.

Definition 6 (General Line k-Covered Overlap) A general
line k-covered overlap, denoted as GenOverlapk

i , is an
interval which starts from the starting point of sensor xi and
ends up to point min(xi + R, 0) if xi locates on the left of
point R, say the interval [xi −R, min(xi +R, 0)]. Or it is an
interval which starts from the pointmax(xi−R, L) and ends
up to the ending point of sensor xi if xi locates on the right
of pointL−R, say the interval [max(xi−R, L), xi+R]. We
denote overlap of this type as TYPE ONE. GenOverlapk

i

can also be an interval which starts from the starting point
of sensor xi+k and ends up to the ending point of sensor xi ,
say, the interval [xi+k − R, xi + R]. We denote overlap of
this type as TYPE TWO.

From Fig. 7a, we can see the two cases for overlap on the
left outside of interval [0, L] and Fig. 7b shows us the right
case. We can see that if we use the overlap for filling up the
gap inside of [0, L], extra distance for the blank between
sensor and ending point of segment [0, L] will arise the cost
for the upper cases of Fig. 7a and Fig. 7b. So we need to
update the cost calculation functions for this reason.

Because we remove the constraint that sensors cannot
be deployed outside of [0, L], we refine the LK-MinMovs
problem as the following linear programming:

min
n∑

i=1
|xf

i − xi | (7)

s.t. s ≤ t − 
K∗L
2R �, ∃1 ≤ s ≤ t ≤ n. (8)

x
f
i+k − x

f
i ≤ 2R,

∀ 1 ≤ k ≤ K,

∀ s ≤ i ≤ t − k
(9)

x
f
s ≤ R and x

f
t ≥ L − R. (10)

From the linear programming, we can see that the
changes are not just removing the initial deployment con-
dition, the additional condition (8) conveys that there is a
sensor sequence that K-covers the interval [0, L]. How to
find the sequence is the most important and most difficult
for solving the problem. For our algorithm, we always find
a current gap to fill by moving the cheapest overlap. In

close deployment assumption, we directly use the first sen-
sor (virtual sensor) x0 to locate the first gap we should fill.
After filling up it, we continue to find the next gap, and this
procedure can be pushed forward until all gaps are filled.
However, for the open deployment assumption, we do not
know which sensor are the breakout one. For optimality rea-
son, we always choose the nearest to the starting point 0 to
start.

6.2 General cost function and our algorithm

Firstly, we redefine the overlap cost as follows:

Definition 7 (General Left/Right Overlap Cost) For
gapk

i , GenOverlapk
l is the left nearest overlap to xi and

GenOverlapk
r is the right nearest overlap to xi+k . Let NSk

l

(PSk
l ) be the set of sensors which have negative (positive

include 0) shift among xl+k, xl+2k, · · · , xl+mk, · · · , xi

sensors, where l + mk ≤ i. Let NSk
r (PSk

r ) be
sensors which have negative include 0 (positive) shift
among xr , xr−k, xr−2k, · · · , xr−mk, · · · , xi+k sensors,
where r − mk ≥ i + k. Let LBlank (resp. RBlank) be
the distance between xl + R (resp. xr − R) and 0 (resp.
L) if GenOverlapk

l is outside left (right) of [0, L]. Let
MinShif t = min(MinLef tShif t,MinRightShif t).
Then Eq. (11) computes the general left/right overlap costs.
⎧
⎪⎪⎨

⎪⎪⎩

GenLcost (l, i, k) =
(|PSk

l | − |NSk
l |) ∗ MinShif t + LBlank.

GenRcost (i, r, k) =
(|NSk

r | − |PSk
r |) ∗ MinShif t + RBlank.

(11)
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Fig. 8 A counter example to
algorithm in [17] (K = 1) (a) x1 x2 x3

x4
x5 x6 x7

x8

(b) x1 x2 x3 (-)
x4

x5 x6 x7
x8
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(e) x3
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In Algorithm 4, we should maintain a sensors sequence
X[s, t] which is located in interval [−R, R], named as
INSensors. So we define a f indF irstGap(k) which per-
forms to find the first gap and returns its index. The range
of the function is 0, s, ..., t . It returns 0 when the gap is
between 0 and the starting point of sensor xs . It returns i

(s ≤ i ≤ t − k) when the gap is between xs and xs+k .
It returns t − k when the gap is between xt−k and L. It
returns −1 when there is no gap of level k. For filling up
one gap we may use sensors outside of interval [0, L] (They
may penetrate interval [−R, R]), and new sensors become
the member of INSensors. We use Update(s, t) function
to expand the bound of the set. Notice that sensors once
become the member of INSensors will not quit in the later
procedure. For the definition of GenLdist and GenRdist ,
we just replace the MinLef tShif t and MinRightShif t

by MinShif t in Eq. (6). We still use the same functions
such as f ind(·), move(·) in Algorithm 3.

6.3 A counter example for MinSum algorithm

Note that the movement cost for the inside overlaps and
outside overlaps are different. The authors in [17] also con-
sidered the shift compensation in spite of using similar cost
functions for K = 1. However, when dealing with outside
overlaps, they did not consider the influence of the distance

between the closest overlap sensor to the endpoints of the
target interval. A counter example is shown in Fig. 8.

In Fig. 8a we give the original positions of 8 sen-
sors. Figure 8b shows the situation when the first gap1

2
with size z are filled, and there is still a gap1

4 with size
y. The results are the same for our algorithm and Min-
Sum. Figure 8c shows the result using MinSum which
exploits overlap1

7 to fill up gap1
4. Here, Lcost (l, 1, 1) =

2 + x and Rcost (7, r, 1) = 3, we assume x > 1
then Lcost (l, 1, 1) > Rcost (7, r, 1). Figure 8d shows
that our algorithm uses outside overlap overlap1

1. Now,
GenLcost (l, 1, 1) = 2 ∗ z + x and GenRcost = 3 ∗
z, we assume GenLcost (l, 1, 1) < GenRcost (7, r, 1)
then x < z. Figure 8e shows the result after using
overlap1

7 in our algorithm. Now, GenLcost (l, 1, 1) = 4
and GenRcost (7, r, 1) = 3, then GenLcost (l, 1, 1) >

GenRcost (7, r, 1). We can calculate the total distance for
MinSum in this procedure as 3 ∗ z + 3 ∗ y while our algo-
rithm total distance is 3 ∗ z + x + 3 ∗ (y − z). We let
x = 2, z = 10, y = 12. Total movements distance for Min-
Sum is 66 and the one for our algorithm is 38. Obviously,
MinSum does not produce an optimal solution.

Fig. 9 Efficiency comparison
under closed deployment
assumption
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Fig. 10 Experiments on redundancy rate and L/R under closed deployment assumption (L = 1000, K = 3)

7 Numerical experiments

In experiments, we respectively compare our algorithms
under closed and open deployment assumption. Under open
deployment assumption, we also compare the general ver-
sion of LLK-MinMovs with MinSum [17] to show our
optimality for solving LK-MinMovs problem. Algorithms
are all implemented in C++. For each case, we run each
algorithm 100 times at random inputs and calculate the aver-
age sum of movements. We define the redundancy rate as
2Rn
LK

.
First of all, we conduct a group of experiments under

closed deployment assumption. We study the coverage level
K . Here we set K = 1 to 10, L/R = 20 and redun-
dancy rate be 1.25. We can see that LLK-MinMovs and
LK-KM+ get more superiority than LK-KM when the cov-
erage level K is increasing. Figure 9a gives the results. In
term of running time, obviously, LK-KM uses less time than
LK-KM+ without pulling back operations so we just com-
pare LK-KM+ with LLK-Minmovs. Figure 9b shows that
LK-KM+ outperforms LLK-MinMovs much more when
coverage level K is increasing.
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Fig. 11 Experiments under open deployment assumption (L = 1000,
R = 5, K = 1, Divergence is 200)

Then, we study the influence on the result with differ-
ent sensor redundancy rate. Besides, we conduct 3 groups
of experiments on different L/R = 10, 20 and 40. And
we set L = 1000, K = 3. Figure 10 shows that in all
cases LLK-MinMovs has the best performance. It worths to
notice that three algorithms have the same result at redun-
dancy rate 1 because each sensor should move to a definite
position for the perfect K-coverage. Sensors need to move
shorter distance when L/R becomes bigger because that
more sensors involved in makes K-coverage more easy to
achieve. The LK-KM is influenced more by L/R. The LK-
KM+ improves LK-KM and is very close to LLK-MinMovs
and is not influenced by L/R.

Under the open deployment assumption, we verify that
general algorithm GenLLK-MinMovs have the best perfor-
mance for line 1-coverage, which proves that the MinSum is
not optimal. Let L = 1000, R = 5 and the results are shown
in Fig. 11. LLK-MinMovs is the best and even sub-optimal
LK-KM+ is better than MinSum. We denote the maximal
distance with which sensors can be deployed away from the
endpoints of the target interval as divergence. Here, the
divergence is set to 200.

For showing the influence of open sensor initial deploy-
ment, we conduct a group of experiments which consider
different divergences. We record the sum of movements in
Table 1. We form line 4-coverage for a region with length
1000 while the divergences are 100, 300, 500, 1000. That
means sensors can be deployed in intervals [−100,1100],
[−300,1300], [−500,1500] and [−1000,2000] respectively
while the target interval is [0,1000]. The results show that

Table 1 Comparison on different divergences (L = 1000, R = 50,
K = 4)

Divergence GenLLK-MinMovs LK-KM+ LK-KM

100 1023.22 1163.74 1464.53

300 3223.26 3229.61 3306.45

500 6119.75 6131.21 6234.12

1000 14322.3 14643.8 14698.9
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sensors should move much more distance when divergence
increases, which is reasonable. Additionally, the general
version of LLK-MinMovs always has the best performance
in all cases.

8 Conclusion and future work

In this paper, we mainly addressed the Line K-Coverage
problem (LK-MinMovs) in mobile wireless sensor network.
The problem can be viewed as an important objective in
social or distributed networks when the position system
is settled down. We firstly proposed two sub-optimal but
faster algorithms, LK-KM and LK-KM+, which are based
on the famous Hungarian algorithm. Then we proposed
an optimal layer-based algorithm LLK-MinMovs with a
polynomial time complexity. We gave its optimality proof.
Further we considered the general open initial deployment
assumption for this algorithm. It fixes a critical flaw of the
MinSum algorithm designed in [17] for line 1-Coverage
problem. LK-KM and LK-KM+ have good time complexity

O(K2L2n

R2 ) while LLK-MinMovs has O(K2n2) as its time
complexity.

In the future, we will consider to implement algo-
rithms we proposed above in a parallel and distributed
way. Because distributed algorithm fits the social network
applications better. Additionally, in order to make the sen-
sor network keep a K-coverage for the target region for a
longer time, it is necessary to keep the remaining power
of all sensors be similar after the movement to guarantee
a valid network lifetime. In [32] and [33], authors con-
sidered another optimization objective, that is, minimize
the maximum movement. We can also adapt the line K-
coverage problem for this objective. Currently we consider
to minimize the overall movement of sensors to extend
the network lifetime, while it might be more practical to
consider to maximize the makespan of individual sensor
movement. Authors in [28] considered the strong barrier
coverage problem with sensor movement in top-down direc-
tions. However, they did not consider for real 2D scenario
in which intruders can be detected in arbitrary direction. We
could extend our work to real 2D, even 3D applications.

References

1. Choi W, Das SK (2009) Cross: a probabilistic constrained random
sensor selection scheme in wireless sensor networks. Perform Eval
66(12):754–772

2. Boukerche A, Xin F (2007) A voronoi approach for coverage
protocols in wireless sensor networks. In: IEEE global telecom-
munications conference (GLOBECOM), pp 5190–5194

3. Bai H, Chen X, Li B, Han D (2007) A location-free algorithm
of energy-efficient connected coverage for high density wireless
sensor networks. Discrete Event Dynamic Systems 17(1):1–21

4. Chizari H, Poston T, Razak SA, Abdullah AH, Salleh S (2014)
Local coverage measurement algorithm in GPS-free wireless sen-
sor networks. Ad Hoc Networks 23:1–17

5. Wang B (2010) Coverage control in sensor networks. Springer,
London

6. Liang JB, Liu M, Kui XY (2014) A survey of coverage problems
in wireless sensor networks. Sensors & Transducers 163(1):240–
246

7. Fan X, Li VOK (2011) The probabilistic maximum coverage
problem in social networks. In: IEEE global telecommunications
conference (GLOBECOM), 6613(1): 1–5

8. Zhang P, Chen W, Sun X, Wang Y, Zhang J (2014) Minimiz-
ing seed set selection with probabilistic coverage guarantee in a
social network. In: ACM international conference on knowledge
discovery & data mining (SIGKDD), pp 1306–1315

9. Dash D, Gupta A, Bishnu A, Nandy SC (2014) Line coverage
measures in wireless sensor networks. J Parallel Distrib Comput
74(7):2596–2614

10. Huang C, Tseng Y (2005) The coverage problem in wireless
sensor network. Mobile Network Application 10(4):519–528

11. Kumar S, Lai TH, Arora A (2005) Barrier coverage with wire-
less sensors. In: The annual international conference on mobile
computing & networking (ICMCN), pp 284–298

12. Shen C, Cheng W, Liao X, Peng S (2008) Barrier coverage with
mobile sensors. In: IEEE international symposium on parallel
architectures, algorithms & networks (ISPAN), pp 99–104

13. Balister P, Zheng Z, Kumar S, Sinha P (2009) Trap coverage:
allowing coverage holes of bounded dimeter in wireless sensor
network. In: IEEE international conference on computer commu-
nications (INFOCOM), pp 136–144

14. Baumgartner K, Ferrari S (2008) A geometric transversal
approach to analyzing track coverage in sensor networks. IEEE
Transactions on Computers (TC) 57(8):1113–1128

15. Harada J, Shioda S, Saito H (2009) Path coverage properties of
randomly deployed sensors with finite data-transmission ranges.
Comput Netw 53(7):1014–1026

16. Sundhar Ram S, Manjunath D, Iyer SK, Yogeshwaran D (2007)
On the path coverage properties of random sensor networks. IEEE
Trans Mob Comput 6(5):446–458

17. Czyzowicz J, Kranakis E, Krizanc D, Lambadaris I, Narayanan L,
Opatrny J, Stacho L, Urrutia J, Yazdani M (2010) On minimizing
the sum of sensor movements for barrier coverage of a line seg-
ment. In: International conference on ad hoc networks & wireless
(ADHOC-NOW), 6288: 29–42

18. Li X, Frey H, Santoro N, Stojmenovic I (2008) Localized sensor
self-deployment with coverage guarantee. ACM Mobile Comput-
ing & Communications Review 12(2):50–52

19. Yang SH, Li ML,Wu J (2007) Scan-based movement-assisted sen-
sor deployment methods in wireless sensor networks. IEEE Trans
Parallel Distrib Syst 18(8):1108–1121

20. Zou Y, Chakrabarty K (2005) A distributed coverage- and
connectivity-centric technique for selecting active nodes in wire-
less sensor networks. IEEE Transactions on Computers (TC)
54(8):978–991

21. Ahmed A, Yasumoto K, Yamauchi Y, Ito M (2011) Distance
and time based node selection for probabilistic coverage in
people-centric sensing. IEEE Communications Society Confer-
ence on Sensor, Mesh & Ad Hoc Communications and Networks
2011:134–142

22. Mondal D, Kumar A, Bishnu A, Mukhopadhyaya K, Nandy SC
(2011) Measuring the quality of surveillance in a wireless sensor
network. Int J Found Comput Sci 22(4):983–998

23. Hesari ME, Kranakis E, Krizanc D, Ponce OM, Narayanan L,
Opatrny J, Shende SM (2013) Distributed algorithms for bar-
rier coverage using relocatable sensors. In: ACM symposium on
principles of distributed computing (SPDC), pp 383–392



Peer-to-Peer Netw. Appl. (2017) 10:1063–1078 1077

24. Bar-Noy A, Rawitz D, Terlecky P (2013) Maximizing barrier
coverage lifetime with mobile sensors. In: The Annual European
Symposium Algorithm (ESA), pp 97–108

25. Saipulla A, Westphal C, Liu B, Wang J (2013) Barrier cov-
erage with line-based deployed mobile sensors. Ad Hoc Netw
11(4):1381–1391

26. Li L, Zhang B, Shen X, Zheng J, Yao Z (2011) A study on
the weak barrier coverage problem in wireless sensor networks.
Computer Networks (CN) 55(3):711–721

27. Wang Z, Liao J, Cao Q, Qi H, Wang Z (2013) Achieving k-barrier
coverage in hybrid directional sensor networks. IEEE Trans Mob
Comput 13(7):1443–1455

28. Saipulla A, Liu B, Xing G, Fu X, Wang J (2010) Barrier coverage
with sensors of limited mobility. In: ACM international sympo-
sium on mobile ad hoc networking & computing (MOBIHOC), pp
201–210

29. Chang WY, Yu KM, So WT, Lin C-T, Lin CY (2011) Target
coverage in wireless sensor networks. In: IEEE international con-
ference on mobile ad-hoc & sensor networks (MSN), pp 408–412

30. Kuhn HW (1955) The Hungarian method for the assignment
problem. Naval Research Logistics Quarterly 2:83–97

31. Munkres J (1957) Algorithms for the assignment and transporta-
tion problems. J Soc Ind Appl Math 5(1):32–38

32. Czyzowicz J, Kranakis E, Krizanc D, Lambadaris I, Narayanan L,
Opatrny J, Stacho L, Urrutia J, Yazdani M (2009) On minimizing
the maximum sensor movement for barrier coverage of a line seg-
ment. In: International conference on ad hoc networks & wireless
(ADHOC-NOW), 5793: 194–212

33. Chen DZ, Gu Y, Li J, Wang H (2013) Algorithms on minimizing
the maximum sensor movement for barrier coverage of a linear
domain. Discrete Comput Geom 50(2):374–408

Yang Wang is a Ph.D. stu-
dent from the Department of
Computer Science and Engi-
neering, Shanghai Jiao Tong
University. He received the
B.S. degree from in computer
science and technology from
Gui Zhou University, China,
in 2005; the M.S. degree
in computer applied technol-
ogy from Shanghai Jiao Tong
University, China, in 2008.
His current research inter-
ests include network optimiza-
tion problems, approximation
algorithm, data mining and
analysis.

Shuang Wu is a graduate
student from the Department
of Computer Science and
Engineering, Shanghai Jiao
Tong University, China. His
research interests include
approximation algorithm,
sensor coverage problems in
wireless networks.

Xiaofeng Gao received the
B.S. degree in information and
computational science from
Nankai University, China, in
2004; the M.S. degree in oper-
ations research and control
theory from Tsinghua Uni-
versity, China, in 2006; and
the Ph.D. degree in com-
puter science from The Uni-
versity of Texas at Dallas,
USA, in 2010. She is cur-
rently an Associate Professor
with the Department of Com-
puter Science and Engineer-
ing, Shanghai Jiao Tong Uni-

versity, China. Her research interests include wireless communica-
tions, data engineering, and combinatorial optimizations. She has
published more than 90 peer-reviewed papers and 7 book chapters in
the related area, including well-archived international journals such as
IEEE TC, IEEE TKDE, IEEE TPDS, TCS, and also in well-known
conference proceedings such as INFOCOM, SIGKDD, ICDCS. She
has served on the editorial board of Discrete Mathematics, Algorithms
and Applications, and as the PCs and peer reviewers for a number of
international conferences and journals.

Fan Wu is an associate pro-
fessor in the Department of
Computer Science and Engi-
neering, Shanghai Jiao Tong
University. He received his
B.S. in Computer Science
from Nanjing University in
2004, and Ph.D. in Com-
puter Science and Engineer-
ing from the State Univer-
sity of New York at Buf-
falo in 2009. He has vis-
ited the University of Illinois
at Urbana-Champaign (UIUC)
as a Post Doc Research Asso-
ciate. His research interests

include wireless networking and mobile computing, algorithmic game
theory and its applications, and privacy preservation. He has pub-
lished more than 100 peer-reviewed papers in technical journals
and conference proceedings. He is a recipient of the first class
prize for Natural Science Award of China Ministry of Education,
NSFC Excellent Young Scholars Program, ACM China Rising Star
Award, CCF-Tencent “Rhinoceros bird” Outstanding Award, CCF-
Intel Young Faculty Researcher Program Award, and Pujiang Scholar.
He has served as the chair of CCF YOCSEF Shanghai, on the
editorial board of Elsevier Computer Communications, and as the
member of technical program committees of more than 60 academic
conferences.



1078 Peer-to-Peer Netw. Appl. (2017) 10:1063–1078

Guihai Chen is a distin-
guished professor of Shanghai
Jiao Tong University. He
earned B.S. degree in com-
puter software from Nanjing
University in 1984, M.E.
degree in computer appli-
cations from Southeast
University in 1987, and Ph.D.
degree in computer science
from the University of Hong
Kong in 1997. He had been
invited as a visiting professor
by Kyushu Institute of Tech-
nology in Japan, University of
Queensland in Australia and

Wayne State University in USA. He has a wide range of research inter-
ests with focus on parallel computing, wireless networks, data centers,
peer-to-peer computing, high-performance computer architecture and
data engineering. He has published more than 350 peer-reviewed
papers, and more than 200 of them are in well-archived international
journals such as IEEE TPDS, IEEE TC, IEEE TKDE, ACM/IEEE
TON and ACM TOSN, and also in well-known conference proceed-
ings such as HPCA, MOBIHOC, INFOCOM, ICNP, ICDCS, CoNext
and AAAI. He has won several best paper awards including ICNP
2015 best paper award. His papers have been cited for more than
10000 times according to Google Scholar.


	Minimizing mobile sensor movements to form a line K-coverage
	Abstract
	Introduction
	Related works
	Problem statement
	Two baselines: LK-KM and LK-KM+ algorithms
	A layer-based algorithm for LK-MinMovs problem
	LLK-MinMovs algorithm
	Optimality and complexity of LLK-MinMovs

	Generalized sensor initial deployment
	Problem redefinition for general initial deployment
	General cost function and our algorithm
	A counter example for MinSum algorithm

	Numerical experiments
	Conclusion and future work
	References


